A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element.
نویسندگان
چکیده
In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.
منابع مشابه
Functional distinctions between yeast TATA elements.
Although the yeast his3 promoter region contains two functional TATA elements, TR and TC, the GCN4 and GAL4 upstream activator proteins stimulate transcription only through TR. In combination with GAL4, an oligonucleotide containing the sequence TATAAA is fully sufficient for TR function, whereas almost all single-base-pair substitutions of this sequence abolish the ability of this element to a...
متن کاملYeast upstream activator protein GCN4 can stimulate transcription when its binding site replaces the TATA element.
We replaced the required TATA element of a yeast gal-his3 promoter by a binding site for GCN4, a protein that normally activates transcription when bound upstream of a TATA element. Surprisingly, GCN4 efficiently activates his3 transcription from wild-type initiation sites, though in a pattern associated with constitutive his3 transcription rather than GCN4 upstream activation through a TATA el...
متن کاملTATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
In the gal-his3 hybrid promoter, his3-GG1, GCN4 stimulates transcription at the position normally occupied by a TATA element. This expression requires two elements within gal1-10 sequences, a REB1-binding site and a second element, Z, which resides 20 base pairs upstream of the GCN4-binding site. No obvious TATA element is present in this promoter. To characterize the function of Z, we replaced...
متن کاملPromoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity.
To gain a better understanding of the role of chromatin in the regulation of transcription by RNA polymerase II, we examined the relation between promoter structure and the ability of Gal4-VP16 to function with chromatin templates assembled in vitro. First, to investigate whether there are synergistic interactions among multiple bound factors, we studied promoter constructions containing one or...
متن کاملSingle-Base Resolution Sequence-Directed Nucleosome Mapping
Nucleosome positioning along the DNA sequence is often viewed as a combination of two distinct aspects – translational positioning and rotational positioning. With low-resolution ( 10–20 bases) mapping techniques such as MNase digestion of chromatin, only the approximate translational position of the nucleosomes is determined. Rotational positioning can be evaluated only when the outward/inward...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 10 8 شماره
صفحات -
تاریخ انتشار 1990